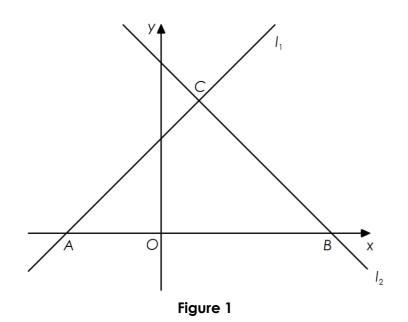
Straight Lines



The line I_1 has equation $y = \frac{5}{4}x + 15$

The line l_2 is perpendicular to l_1 and passes through the point B(15, 0), as shown in Figure 1.

a. Show that an equation for the line l_2 is

6x + 5y = 90

Given that

- lines l_1 and l_2 intersect at the point C ٠
- line I_1 crosses the x-axis at the point A ٠
- b. find the exact area of triangle ABC, giving your answer as a fully simplified fraction in the form $\frac{p}{q}$

The two lines are perpendicular to each other, therefore the products of а, their gradients will be -1. So the gradient of l_2 is $-\frac{6}{5}$

As 6 passes through the point (15, 0):

 $y - 0 = -\frac{6}{5}(x - 15)$

1 mark

1 mark

1 mark

5y = -6x + 906x + 5y = 90

4 crosses the x-axis when y = D: 6. $\frac{1}{6}x + 15 = 0$ x = -18Coordinates of A = (-18, 0)

1 mark

Solving the equations for 4 and $\frac{1}{2}$ simultaneously for the value of y. 1 mark

> 6y - 5x = 906x + 5y = 90 $y = \frac{990}{61}$

1 mark

Area of triangle = $\frac{1}{2} \times (15 + 18) \times \frac{990}{61}$ 1 mark $=\frac{16335}{61}$

1 mark

(5 marks)

(3 marks)